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Assuming the minimal requirements necessary to derive the Froissart bound, the number of subtractions 
for the fixed-momentum-transfer dispersion relation in the unphysical region 0</<4ju2 turns out to be 2. 
In the proof, the positiveness of all the derivatives of absorptive part with respect to t at 2=0 is used. 
Physical implications and applications of this result are briefly discussed. 

IT has been shown by Froissart,1 some time ago, that 
if a scattering amplitude satisfies Mandelstam re­

presentation, then the forward scattering amplitude 
(with relativistic normalization) is bounded by Cs In2 

(s/so) at high energies, where s is the square of the 
center-of-mass energy. Further, one of us2,3 showed that 
the only necessary assumptions to get the Froissart 
result were: 

(a) At fixed energy the scattering amplitude is 
analytic with respect to t=— 2k2(I — cos0), (where 6 is 
the cm. scattering angle and k the cm. momentum) 
in some neighborhood 3D of the segment /=0 —»/=4/*2. 
Then it follows that the absorptive part of the ampli­
tude is analytic inside an ellipse with foci 2=0, /= — 4&2 

and semimajor axis /= 2&2+4/A This may be shown be­
cause from the result of Lehmann4 we know that the 
partial-wave expansion of the absorptive part con­
verges in some ellipse, and due to the positiveness of the 
expansion coefficients, as a consequence of unitarity, 
the largest ellipse in which the expansion converges has 
a singularity at the extreme right in the t plane and 
therefore cannot intersect the segment /=0, /=4JU2. 
Further, it follows that the amplitude is analytic inside 
an ellipse with foci t=0, t——4tk2 and semimajor axis 

2k2+jjL2— ea, where e —> 0 as s —><*>. 

(b) The second assumption necessary for the proof 
is that for 0<t<4:fx2 the absorptive part of the ampli­
tude is bounded by sN. This latter assumption is familiar 
but it seems very hard to justify, pf one replaces this as­
sumption by the much weaker condition A (s,t)<expsM 

for t<l/sN one still gets, adapting the argument of 
Refs. 2 and 3, that the forward scattering amplitude is 
polynomial bounded for real s.~] 

Here we want to maintain the minimal requirements 
necessary to derive the Froissart bound and take into 
account the further requirement that the scattering 
amplitude for fixed /, inside the region of analyticity 
in t described above (3D), is analytic with respect to s 
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in a twice-cut plane, with cuts from s= (MA+MB)2 to 
+ oo and from s= — ^o—ilm t to s~ ( M A - M B ) 2 - / , 
where MA and MB are the masses of the scattering 
particles. 

Condition (b) enables us to write iV+1 subtracted 
dispersion relations for the amplitude for 4/,t2>2>0 

N+l N S 

F(S,1)=J: Cn(t)s»+— 
n=0 7T / 

A9{s',t)ds' 

v'N+l (s's) 
N+l f Au{u',t)du' u»+1 r 

IT J «'*+» («'-«) ' 
(1) 

where the familiar variable u is defined by 

s+t+u=2(MA
2+MB

2) 

and from unitarity A8(s,t), absorptive part associated 
with the reaction A+B —> A+B, and Au(u,t) associated 
with A+B—» A+B, are positive. This will turn out to 
be the crucial point of the present work. 

For / inside 3D and s complex, with say, Res big 
enough, the integrals appearing in the right-hand side 
of (1) are uniformly convergent with respect to / and 
are therefore analytic functions of /, inside 3D for fixed s. 
Therefore, the subtraction polynomial is itself analytic 
in t inside 3D, and since this is certainly true for N+1 
values of s, this is also true for the coefficients Cn{t). 

However, following the lines of Ref. 2 or 3, it is easy 
to see that in addition to the information 

\F(s,0)\<Csln2s, (2) 

one can, given e in advance, find a value 0<^o<4/i2 

such that for 0<2<*o 

\F(s,t)\<Cs1+< (3) 

We shall choose e strictly less than unity. 
Then in the interval 0</</o we can write dispersion 

relations with two subtractions only: 

s2 fAs(s',t)ds' 

T J S'2(S'-S) 

u* r Au(u
f,t)du' 

T J U'2(u' — U) 

Expressions (1) and (4) should coincide for 0</</o. 

+-fAM- . (4) 
J u'Hu'- % 
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Using the familiar identity 

X2 1 X2 

X'2X'-X X'3 

we get for 0< t< t0 

XN XN+1 1 + -, 
X>N+I x,N+1X/-X 

a(t)+s(3(t)+ 
*r rsn r A8{s',t)ds' un C Au(u',t)du,m 

= ECn(05». (5) 

Now let us distinguish two cases: 
(i) N is even. Then clearly, 

CN(t): 
1 r A9(s',t)ds' 1 fAu(u',t)du' 1 r As{s\t)ds' 1 f 

w J s'N+x IT J ,/i\r-fi 
(6) 

This equation holds only for t<t0, though Car 00 is 
analytic up to /=4/A However, from unitarity, we 
know that 

Au(u',t)=Z Au^(u')t\ 

with A,™(sT) and ^« ( n ) ( / )>0 . 
Then, since the right-hand side of (6) converges for 

t<k, we conclude, according to a theorem on the ex­
change of summation and integration that for t<h 

CN(t) 
^ |-1 f A.™Wets' 1 rAu^(s')ds'-\ 

wJ y^+i J" 

w r i /• 

n==0 L7T J JN+1 

However, this is the power-series expansion of CW(/), 
with positive coefficients. CWW being analytic up to 
/=4//2, this expansion converges up to |/|=4/*2. Then 
reversing the argument, the convergence of the series 
guarantees the convergence of the two integrals in (6) 
from /=0 to t=4jj2. This means that we can undo one 
subtraction in integral representation (1). 

(ii) N odd > 3 . Then from (5), using 

we get 
u**2(MA*+MJ)-s-t 

1 [A8(s',t)ds' 1 cAu{u\t)du' 1 f A8(s',t)ds' 1 r 

T J S'N^ T J ,,'N+l 
(7) 

CN^(t): 
1 rAs(s',t)dsf 1 CAu{uf,t)duf 

rJ S'N IT J u'N"~~ 

+N£2(MA
2+MB

2)-ty / —— , (8) 

We notice that we have necessarily 

2(MA
2+MB

2)>W, 

otherwise we would have a singularity in / either at 
/=4MA

2 or /== 4MB2 due to the exchange of the A A or BB 
system and we would have to redefine /*. Then, noticing 
that the expansion coefficients of [2(MA2+MB

2) —t]~l 

are all positive, we first prove that 

CN^(t)l2{MA
2+MB

2)-t^ 

has positive expansion coefficients in t. Then generalizing 
somewhat the argument of case (i), we deduce again 
that the three integrals in the right-hand side of (8) 
are convergent for 0</<4/z2. From this it follows im­
mediately that 

A s(s',f)dsf 

I- c W 

also converges for 0<£>4/x2. Hence, we can undo two 
subtractions. 

Carrying again the process as many times as neces­
sary, we conclude that representation (4), with only two 
subtractions holds not only for t<to but on the whole 
segment 0</<4#2, and the integrals 

/ , 

A9(s',t)ds' 

(MA+MB)' • I 
Au(u',t)du' 

(9) 
(MA+MBV 

are absolutely convergent for /<4/A 
If we make the further assumption that the subtrac­

tion coefficients a(t) and 0(t)9 which are already known 
to be analytic in 1t\ <n2 are in fact analytic in 1t| <4/z2, 
we can extend the validity of representation (4) to the 
whole region |/|<4ju2.5 Indeed it is easy to see from 
unitarity that the expansions of A8(s',t) and Au(u',t) in 
power series around t=0 have positive coefficients, 
therefore, for \t\ <4JJ,2 we have 

\A8(s',t)\<A8(s',\t\), 

\Au(u'yt)\<Au(s',\t\). 

And hence in region \t\ <4iu
2 only two subtractions are 

necessary. 
Let us now list some of the consequences: 

(a) From the assumptions made at the beginning of 
this paper the previous expression for the Froissart 
bound was, in the total cross section 

<rt(s)<C(N) In2(s/so), 

where C(N) depends on the number of subtraction in 
the following way2: 

C(N)*=N*(ir/v?) 

However, from the convergence of integrals (9) we 

5 One can prove this, at least in some particular cases, by 
selecting an energy such that the size of the Lehmann ellipse is 
big enough. 
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now know that there is at least a sequence of increasing 
energies for which 

<rt(s)< (47r//?) ln2(V*o) (10) 

so that we have removed the major arbitrariness in the 
Froissart bound. In fact, a stronger condition can be 
obtained: 

/ • 
5exp 

/At2 ^ y / 2 -i 
21m ) - 1 

\4TT \n2sJ 
ds must converge. (11) 

This means that if on a segment Si~S2 <rt exceeds (10) 
by a factor 1+e this segment must go to zero as si goes 
to infinity. 

(b) In the symmetric case where the scattering ampli­
tude is invariant in the exchange of s and u (example 
7T+7r° scattering) (4) can be rewritten in terms of the 
symmetrical variable z= (s—2fx2+t/2)2 

n*,t)=f(t)+-
(2/i' 

lmF(z\t)dz' 
(12) 

From Eq. (12) we deduce the property ImjF(;s,/)/Imz>0 
which is the definition of a "Herglotz" function.6 There­
fore, F(z,i) has no complex zeros. We also notice that for 
z real <[2M

2+ (t/2)J, (d/dz)F(z,t)>0 and thence 
F(z}t) has at most one real zero (which corresponds to 
two complex conjugate zeros in the s plane). So the 
property ImF($,/)>0 for 4,u2>£>0 is also valid in the 
whole quadrant of the s plane lms>0, Res>2/z2—1/2 
(with the corresponding symmetries). In addition, for 
/>0 F(s,t) cannot decrease faster than 1/s2 as 5 goes to 
infinity.7 

(c) If analytic continuation to the third channel is 
possible, which is the case if Mandelstam representation 
is valid, one can investigate what happens for t —» 4/x2. 
Let us take the completely symmetric case in stu. Then 
the subtraction polynomial, taken at i—Ay? gives us 
essentially the N first zero-energy scattering lengths 
in the t channel. These, if normal threshold behavior 
is assumed, are finite. Therefore the integrals 

f 
J AH 

As(s't)dsf 

etc. 

have a finite limit for t—Ajj?. They represent a particular 
case of the Froissart representation8 of partial-wave 
amplitude in the / channel. Hence, from our result we 
deduce that the scattering lengths at £=4/x2 are analytic 

6 See, for instance, J. A. Shohat and J. D. Tamarkin, The Prob­
lem of Moments (American Mathematical Society, New York, 
1943), p. 23. 

7 This question will be developed in a forthcoming paper. 
8 M. Froissart, Proceedings of the La Jolla Conference on Weak 

and Strong Interactions, July 1961 (unpublished). 

in the angular momentum I for Re/> 2. More specifically 
if we define the scattering lengths as 

piSi(q) 

az=lim-
smdi(q) 

tf->0 rfil+1 

where q is the cm. momentum in the t channel, and 
bi the phase shift in the t channel, the representation 

r(/+i) 
dy 

2MT(1+3/2WITJAM% 

As(s
fM)ds' 

n+i 

is valid for 1=2, 4, etc. •••, and since A8(S'94IJL2) is 
positive we conclude that the scattering lengths are 
positive for 1^2. This could be extended to more real­
istic cases with sufficient care. 

(d) More generally for | / |<4^ 2 the holomorphy 
domain of the partial wave in the t channel certainly 
contains Re/> 2, and, if sufficient analyticity is assumed 
this can be extended to the interior of the parabola 

*= (2ix-~i\)2 X real 

by using the Legendre polynomial expansion of ^4,(^,0 
instead of the power-series expansion. This should allow 
one to improve the holomorphy domain previously 
obtained by Bardakci.9 

(e) If, in the t channel, poles with angular momentum 
0 or 1 occur for /<4/x2, the conclusions are unchanged 
because one can merely subtract them. Poles with higher 
angular momentum will be considered in a separate 
publication by MacDowell.10 

Finally, we should mention that we are aware of the 
fact that the main result of this paper, the number of 
subtractions for /<4ju2 is at most two, comes out very 
naturally in the Regge pole dominance hypothesis, 
because then, for 0<£<4/z2 the even signature poles 
should dominate and hence the dominant Regge tra­
jectory cannot cross 1=2 for t<Ay? without producing 
a pole which was not present by assumption. However, 
the whole point of our paper is to show that this is true 
with much more generality. 
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